
Champ is designed to run on the
Commodore 64, BBC Micro model B, and
Sinclair Spectrum 48K.

lt comprises an assembler for
6502/6510 or Z80 assembly language, a
program editor, and a monitor/debugger/
disassembler. These facilities make Champ
a powerful aid to the assembly language
programmer.

LOADING CHAMP

BBC Model B — CHAIN “”
C64 — Hold down [SHIFT] and
hit [RUN/STOP]
Spectrum 48K — LOAD “”

Champ will auto-run when loading is complete, so,
having issued the LOAD command, you need do
nothing until the screen clears and displays the
copyright message. Stop the tape, remove it, and
replace it with a blank data tape if you intend to save
program files from Champ.

In addition to the copyright message on the screen,
you will see a message about Champ’s location in
memory; this is important data, so make a note of it
all now, even if you’re not sure what it’s for. When
you've done that, hit [ESC] to run Champ. (This refers
to the BBC Micro; the corresponding key presses for
the Commodore 64 and Spectrum are listed in the
Key Conventions panel.)

The screen should look like this:

Label Instruction Operand
Field Field Field

Edit Line }

Error Line} |

Command Line ASSEMBLES

At this point, the computer is waiting for you to type
in an assembly language program, but don’t do
anything yet.

Have a look at the two example programs given

overleaf, and choose the one for your computer. (The
6502 program for the BBC and Commodore 64
machines, the Z80 for the Spectrum). The two
programs are equivalent.

The first thing to notice is that there are a lot of
semi-colons (;) about. These may look strange, but
are simply the equivalent of REM in BASIC. In
machine code programming lines beginning with ‘:’
are known as COMMENTS, and they are extremely
important if you want to understand something you
may have written weeks ago. You can put anything
you like inside a comment without affecting the
program. The comment must begin on a new line. We
have put the equivalent BASIC program lines in
comments so that you can see how the machine code
instructions can be made to operate in the same way
as BASIC.

SHANE

Ee ITOR ASSEMBLER HONITOR

from PERSONAL SOFTUARE SERU Toes

ZB@Q version

© 1964 bo. Ritchie P.S

e

OO tle #3

ist ms * re

EE a

“ye H

fi 2

ee OO

mM

oo BTR Ag So 6 OCF ince

200

% @ NG S Wag mh " ~~ Pier i

Spectrum, 1

SS Re aa ne aa

65026510 ASSEMBLER-EDITOR
MON I TOR/DEBUGGER-DISASSEMBLER

DEVELOPED FOR THE
HOME COMPUTER ADVANCED COURSE

PERSONAL SOF TUARE SERVICES

WRITTEN BY TONY STOOOART

TO COLD START USE CALL 4096

TO WARM START USE CALL 4099

AMS ASSEMBLED WIT iT
COMMAND WILL BECIN ae ATER”

ADORESS OF THE PROGRAM BUT TARE Tamete
S AOORESS WILL vaRe TEMT

is "RoDIE TED et
* PRESS ESC TO CONTINUE *

boo

BBC Micro, 2

Commod p 64, 3

Opening display 1,2,3
The opening display of Champ

shows the warm start and cold start
addresses of the Champ program. If
you quit to BASIC and want to return
to Champ you should use PRINT USR
(addr), SYS (addr) or CALL (addr),
where addr is the appropriate warm or
cold start address. (A cold start is
what you get after switching your
machine off; it clears Champ’s
buffers of any source code you have
entered. A warm start restarts Champ
as it was when you quit it.)

Any line that does not start with a ‘’ is an
assembly language statement. The first one is ORG
$CQQ0. This is not a machine code instruction: it
tells the assembler where to put your program when it
turns your assembly language into machine code.
ORG is short for ORIGIN; $CQQO is a hexadecimal
numeral (signified by the ‘$’ sign), equivalent to
49,152 decimal. In BASIC, you don’t need to worry
about where your program is because the interpreter
looks after all that for you. Now, you have the whole
of the computer under your control, and that means
that you decide where you want your program to go.

You also have to tell the assembler where to put
your variables. Once again, BASIC does all this for
you, but in machine code you have to do it yourself.
For large machine code programs it is usually a good
idea to put all your variables together in one block,
but for small programs it’s all right to put them next to
the appropriate part of the program for clarity. The
next few assembly language statements in our
example tell the assembler that you want to use two
variables, | and J, and that they will be found at the
beginning of the program, right after the ORIGIN
address. Because we are not going to use numbers
larger than 255, we need only one byte for each of the
two variables, so the DB (Define Byte) statement is
used. If we had wanted to use larger numbers we
could have used the DW (Define Word) command to
reserve two bytes for each variable. BASIC would
automatically have used up five bytes for each
variable. These storage-defining commands simply
tell the assembler not to use an area of memory
because you're going to store some variables there.
They also tell the assembler how big each area is and
what the areas are going to be called (in this case |
and J).

The storage commands, the ORG command and
the COMMENT are all called pseudo-ops (‘ops’ being
Short for ‘operations’) because the assembler doesn't
generate any machine code from them; they are just
there for your (and the assembler’s) attention.

All the other assembly language statements will be
translated by the assembler into executable machine
code instructions — that is, instruction codes that
will cause the microprocessor to do something.
Among these instructions are: Load A Register; Test

a Flag; and Jump or Branch to a new address. These
make up the rest of the example program listing.

If you're not too clear about any of the three types
Of pseudo-ops (COMMENT, ORG or storage) then
please re-read this section. It’s not at all difficult,
once you get the hang of it, but do take it at your own
pace.

Now that we have covered the different types of
statement understood by the assembler, you can
enter the example program. Please refer to the
relevant Hands On section below.

Operating Modes
<ASSEMBLE> mode

is used after you have typed in an assembly
language program, in order to assemble it into
machine code

<INSERT> mode
is what you use to type in an assembly
language program

<EDIT> mode
enables you to modify an existing assembly
language program

<DEBUG> mode
allows the inspection or modification of the
contents of the memory, or the execution of a
machine code program

Both <ASSEMBLE> and <DEBUG> modes are
command modes. In these modes various keys
represent commands that make something happen
to your program or to memory. On the other hand,
<INSERT> and <EDIT> are text modes; with these
you Can move program text around on the screen, and
add to, or modify, it.

You can change from one mode to another as shown
here.

<n ee |) INSERT

[ESC]

KEY
CONVENTIONS
A letter (or letters) enclosed in
Square brackets, thus [Al],
means ‘the key carrying this
symbol’. Special keys referred to
in this Manual are:

KEY MEANING
[RET | [Return key |;

[Enter] on
Spectrum

[ESC] [Escape key]:
[<] on C64;
[Caps Shift + 1] on
Spectrum

[CRSRR] [Cursor Right]:
[Caps Shift +
8] on Spectrum
[Cursor Left];
(Caps Shift +
5] on Spectrum
[Cursor Up]:
[Caps Shift +
7] on Spectrum
[Cursor Down];
[Caps Shift +
6] on Spectrum
[Control Key]:
(Caps Shift] on
Spectrum
[Space Bar]

Hands on — Spectrum
The <ASSEMBLE> prompt on the bottom line of the
screen display is telling you that the assembler is
waiting for you to do something. We want to enter our
first program, so tell Champ you want to EDIT by
pressing CAPS SHIFT and 1 simultaneously. The
prompt changes to <EDIT> and shows a flashing
underscore at the cursor position. The first thing you
need to put in is a comment to say what the program
does, so type a semi-colon, together with the title of
the program and any other information you think might
be useful. Press ENTER before you reach the
right-hand side of the screen. The line you have just
typed will move up one place and the cursor will start
flashing at the beginning of the new line. The prompt

2

will now show <INSERT>, because you are now
inserting new information into the assembler. If you
make a mistake before pressing ENTER, then use the
Cursor keys (which operate as normal) to correct your
mistake, and just type over any mis-spelt words. If
you pressed ENTER before noticing your error, don't
worry; you Can Correct it in a minute.

As you can see, you can also use blank comment
lines to space your program listing out to make it
more readable.

When you have finished typing the introductory
comment, and the cursor is at the beginning of a new
line, try pressing ENTER once more. You will find that
you go back to <EDIT> mode. In <EDIT> mode, you
can use the cursor keys to scroll the listing up and

CHAMP EXAMPLE PROGRAM
6902 VERSION |

ORG $C000

VARIABLES >

| DB
J DB SQ

PROGRAM

; 10 FOR | = 100 TO 1 STEP-1
LDX #964

NEXTI SIX |
; 20 FOR J = 255 TO 1 STEP-1

LDX #$FF
NEXTJ SIX J
; 30 NEXT J

LDX J
DEX
BNE NEXTJ

; 40 NEXT |
LDX |
DEX
BNE NEXTI

; 0 RETURN: REM TO BASIC OR CHAMP
RTS

down and move the cursor through any line you may
want to change. Correct any mistakes you may have
made (but don’t press ENTER) and move the cursor
back down to the bottom of the text. Now press
ENTER again and you should once more have the
cursor on a blank line with text above it and nothing
below. If not, use ENTER to toggle between <EDIT>
and <INSERT>, and use the cursor keys to get you
to the correct position at the bottom of the text.

If you now type a space without a semi-colon, the
cursor will skip to the second coloured field (column),
because Champ ‘knows’ that if you type a space
here, you don’t want anything in the first field. Now
type in ORG followed by a space. Once again, when
Champ gets. the space, it knows that it has to skip to
the next field. So you can complete the ORG
instruction by typing $CQGO followed by ENTER. All
instructions except comments are typed into the
assembler in this way; when you've finished using a
particular field (or don’t want to use it at all), use the
space bar to move to the next field or ENTER to move
to the next line.

If you want to type a line containing a label, then
Start in the LABEL field (the leftmost one), type your
label followed by a space, and continue with
instruction and operand fields.

some typing errors will be recognised by Champ
when you press ENTER and will cause an error
message to be displayed. Possible errors at this point
are LABEL, INSTRUCTION or OPERAND errors.
These correspond respectively to the three coloured
fields in the assembler display, so if you get an error
message you should find your mistake in the field
referred to. Use the cursor keys to go back and
correct the mistake when you’ve found it.

When you've typed the listing in, press ENTER one
last time to return to <EDIT> mode, then use the
cursor keys to run through the listing to ensure that it
looks like the example. When you are satisfied, press
CAPS SHIFT and 1 to return to <ASSEMBLE> mode
and SAVE your text, using the S command. (This can
be loaded back at any time using the J command.)
This is a good habit, as it is easy to lose what you are
doing when using machine code since you can't use
SHIFT/BREAK to stop a runaway program.

Having SAVEd your listing, you can now
assemble it. Type A (for assemble), and Champ will
display ASSEMBLE=> on the prompt line. Type in 3
as your assembly option — this tells the assembler
what sort of listing you want and is explained more
fully elsewhere in the manual. Press ENTER at this
point and assembly should commence.

lf all is well, Champ will print a version of your
listing with some extra numbers on the left-hand side.
The leftmost column of numbers shows the
addresses to which each instruction has been
assembled. They may look a little odd because they
are expressed in hexadecimal notation. Notice that
the addresses do not increase after comment lines:
this is because comments do not produce any
machine code. This is reflected in the second two
columns of numbers, which contain the machine code
values loaded into memory. You can see that
comment lines once again produce no machine code.

After the listing you will also see a tabie of all the
labels you used: this is called the symbol table and
Champ produces it for your convenience. It enables
you to find the parts of the program you want quickly.

Note that addresses of variables and jump labels
are held in the symbol table in the same way; this is
because the microprocessor holds them in a similar
way in its internal registers.

Having successfully assembled our example
program, we want to examine the program as it is in
memory. Enter the monitor part of Champ by pressing
M. The screen should now display the <DEBUG>
prompt. |

The start address of your program is not $COQQ,
but $CQ@@2, because of the space that you reserved
for two variables. So type Q (for disassemble),
followed by CQ@@2 (you don't need a $ sign in
<DEBUG> mode).

When you press ENTER, you will see a listing
Similar to the code you entered, but without the
comments, variables, labels and pseudo-ops. You will
remember that these produce no machine code. (If
you now press any key, the Disassemble feature will
display a further block of memory; it will do this
repeatedly, until you press CAPS SHIFT/1. To return
to the disassembly, you will then need to type
QC002.)

lf this listing doesn’t look like the machine code
you typed into the assembler, then type CAPS
SHIFT/1, return to <ASSEMBLE> mode by typing A
ENTER and reassemble the prograra, checking that
you use the correct option and that when you finish
the assembler says that it found no errors.

And now for the moment of truth! If the listing
printed by the disassemble command looks correct,

In<EDIT> mode, source text is

displayed with the cursor on the
Edit Line, and <EDIT> on the
Command Line. Text on the Edit
Line can be overwritten or deleted
(using [DEL] or [SP]). [RET]
causes the Edit Line contents to
be checked for syntax and format.
An error message will appear if
the line is faulty, and the text will
remain on the Edit Line. If the line
is acceptable, it will be entered
into the source text, and mode
will change from <EDIT> to
<INSERT>. [RET] toggles these
two modes, while [ESC] toggles
<EDIT> and <ASSEMBLE>

modes.
The following keys can be

used to move the source text on
the screen, assuming the text on

the Edit Line is correct. Ifa line is
edited, and if the edited text is
valid, then any of the following
keys has the effect of entering the
new line into the source text
without changing the mode.

Itis in this mode that you actually
type your Assembly language
program into the Assembler. The
Command Line Shows
<INSERT>, and a_ flashing

cursor appears on the Edit Line.

The Edit Line (and the whole
screen) is divided into three
coloured columns, corresponding
to the Label, Instruction, and
Operand Fields of an Assembly
language program:

Label Field
A label is any alphanumeric
string of up to six characters.
There must be a letter in the first

position of the Field. A label does
not require a colon (or any other

character) as delimiter.

Instruction Field
Instructions are Assembly
language mnemonics as in MOS
Tech 6502 and Zilog Z80
Specifications. They may be two,
three, or four letters long, starting
in the first position of the Field.

Operand Field
Operands may be hex constants
(which must be preceded by $),
labels, symbols, or expressions
comprising two operands
Separated by + or — Decimal,

octal, and binary constants are

<EDIT> MODE
COMMANDS

<INSERT> MODE
COMMANDS

KEY EFFECT

IN Moves one line up
the text.

IW] Moves one line
down the text.

[CTRL|+[U] Moves the screen
text up one page.

[CTRL]+[D] Moves the screen
text down one

page.
(CTRL]+[T] Moves to the top

of source text.

[CTRL]+[B] Moves to the
bottom of source

text.

(CTRL]+[Z] Deletes the Edit
Line contents.

[ESC] Enters
<ASSEMBLE>

mode.

[RET] Enters
<INSERT>

mode.

N.B. The text movement keys
have the same effects when used
in <ASSEMBLE> mode, but
they then donot require[CTRL] to
be pressed. Thus [U] in
<ASSEMBLE> mode moves
the screen text up one page.

not permitted. Operand formats
for the various addressing modes
are as specified by MOS Tech

and Zilog.

Text entry in <INSERT> is
subject to Field Formatting: This
means it is impossible for you to
type aseven-character label, or a
five-character instruction. Typing
an extra character, or hitting
[SPACE], causes the cursor to
skip to the first position of the

next Field.
The [CRSRR], [CRSRL], and

[DEL] keys act as normal in
<INSERT> mode — subject to
Field Formatting — but the
delete key acts on the cursor
character rather than on the

character to the left of the

cursor.
When you hit [RET] in

<INSERT> mode, the contents

of the Edit Line are checked for

syntax and format; if an error is
found, then a message appears
on the Error Line. If no error is
found, then the contents of the
Edit Line enter the source: text,
and the Edit Line is cleared for the
entry of a new line. Hitting [RET]
when the Edit Line is blank

toggles between <EDIT> mode
and <INSERT> mode.

<DEBUG> MODE
COMMANDS

This mode combines the

following functions: ABBREVIATIONS
Memory Monitor — allows you to addr any hex address

inspect and alter the contents of —saddr start address of a

memory. block of memory

Hex Disassembler — allows you — faddr finish address of a

to interpret the contents of block of memory

memory as machine code to be (=1+ address of last

converted back into Assembly byte of block)

language. daddr destination address in

Debugger— allows you [0 hex

execute machine code programs hx a hex value (hx<=

and trap errors. FF)
CPU register name

Jhepues macommandie U register
see below

but the Command Line/Edit Line/ expr ae as Fe
Field Format display of the other expression in one or
modes is not used: the screenis a two operands;
blank page showing only the
prompt and a cursor. In this mode
all constants are hex constants
without the ‘$’ prefix, although
the ‘H’ command = supports
decimal constants.

operands may be

decimal constants, ‘$’
— prefixed hex
constants, or legal
symbols; operators
are ‘+’ or ‘—

bystr a string of hex byte
values separated by

Spaces
chstr a String of characters

(exactly as it appears,

no separators)

COMMAND’ EFFECT

@ addr Memory from the given address onwards is displayed

one byte at a time, in hex and ASCII equivalent. Hit
[RET] to advance to next byte, hit [ESC] to return to
command level, or type a hex constant to replace the

existing content of the byte

A Return to <ASSEMBLE> mode

D addr Memory from the given address onwards is displayed in

screen pages; hit any key to continue, or [ESC] to
return to command level

F saddr Every byte between saddr and faddr is filled with hx

faddr hx
M daddr The block of memory between saddr and faddr is

saddrfaddr copied to the block starting at daddr

Q addr Memory from addr onwards is disassembled; hit [RET]

to continue, and [ESC] to return to command level
G addr The code starting at addr is executed (returnable)

C addr Execute from addr (non-returnable)

Bn=addr A breakpoint number n, (between 1 and'8) is set at

addr, to cause a break in execution of any program
which accesses the contents of addr as an instruction;

press [C] [RET] to continue from breakpoint

En Eliminates breakpoint n
T Displays the addresses of all the breakpoints
Rregname Displays the contents of a CPU register and accepts a

new value (similar to the function of ‘@’ above)

J addr Executes the code from addr onwards, one instruction

at a time, giving a full register display. Hit [J] to
continue, [ESC] to return to the command level

H expr Displays the decimal, hex, and binary value of expr

§ bystr Searches the memory from $0000 onwards for every
occurrence of bystr. The word ‘searching’ is displayed
while the program is searching, and the address is
displayed when bystr is found. Hit [RET] to continue

5 the search, or [ESC] to return to command level

Nchstr As‘S’ above
W Load, Save, and Verify machine code to tape; see

BASIC panel

CPU Register Na
Abbreviations

6502
= Accumulator; X, Y= X,Y A = Ac

registers; P= Statusregister,SP Status 1
= Stack Pointer H.

Pointer: |

<ASSEMBLE

COMMAND
FORMATS
Find => string [RET] KEY PR

Searches the Assembly language [F] Fir

program from the start of the
program for the first occurrence [L] Lo
of the given string.
Next => string [RET] [W] Se
Searches the Assembly language
program for the next occurrence {[V] Ve
of the given string. The search
begins from the end of the [P] Pr
program line currently on the Edit
Line. [Q]} Qu
Find =>[RET] and [M]
Next => [RET]
As above, but this searches for
the string defined in last‘F or‘N’ [ESC]
command. While a search is
preceeding, the message

‘searching appears onthe Error [A] As

Line. If the search is successful, =
the line containing the string
being searched for appears on To abort
the Edit Line. If the search is donotel
unsuccessful, the last line of the just hit!
program appears on the Edit Line. prompt
Load => Save => Verify =>
These must all be followed by a
filename; double quotes are not KEY
needed, but the filename must be (J)
legal for the users machine. (S]
Print => expression [RET]
This prints the hex value of the FRI
given expression on the Error

Line. eg.
Print =>$F8-S$C1 $37
Symbols already defined in
source text can be used in
expressions; but only one
Operator (+ or —) is allowed per

expression.
Quit =>[Y]
This quits Champ and returns —
control to the BASIC system only
if [Y | follows the prompt;
any other response aborts the
command.

[M]
Enter <DEBUG> mode. Return |
from there to <ASSEMBLE>

eens

mode by pressing [A] [RET].
[ESC]
Toggle <EDIT> and
<ASSEMBLE> modes.
Assemble => (option number) [RET]
This assembles the source text in
one of a variety of ways,
depending upon which numerical
option is chosen:

Register Name
bbreviations

780
= X,Y A = Accumulator, F = Flag/

er.SP Status register, H.L.BC,D.E =

MBLE

guage

Mf the

rence

guage
rence
earch

f the

e Edit

es for
or‘N’

ch is
ssage
Error
SSful,
String
rs on

pturns

n only

s the

feturn

E> j
].

and

[RET]
textin

ways,

erical

H...E registers; SP = Stack
Pointer; IX, lY = IX, lY registers.

6502
INSTRUCTION

#304

$A290
$31 FE,X
$7B,X
($2A,X)
($2A),Y

ADDRESSING MODE
Immediate

$3C Zero Page (Direct)
Absolute (Direct)
Absolute Indexed
Zero Page Indexed
Pre-Indexed (Indirect) CCF
Post-Indexed (Indirect)

INSTRUCTION
FORMATS

Implied

ASSEMBLY LANGUAGE
FORMATS

KEY PROMPT FUNCTION

[F} Find=> _ Finda string
[N} Next=> _ Find a string PSEUDO-

[L] Load=> Load a source op-

file CODES MEANING
[W] Save=> Savea

source file ORG origin: = gin: assemble
IV] Verify=> Verify a. addr == machine code in

source file memory from addr
[P] Print=> Print value of onwards. The program

; EXPression line with ORG on it
a Quit => ra to BASIC cannot take a label.

nter ; equate: set the symbol
<DEBUG> in the Label Field equal
mode to the constant,

[ESC] Enter symbol, or expression
Ae as in the Operand Field.

define byte(s): load
[A} Assemble Assemble this location, and as

> program

To abort any of these commands,
do not enter a command operand,
just hit [RET] in response to the
prompt.

many following as
required, with the
value(s) of const or
chrstr
define word: load this
location with the lo-

inti byte, and the next

Spectrum variations location with the hi-
KEY PROMPT byte of the operand

[J] Load => define storage: add the

(S] Save=>: value of the operand to

[sym.shift] + Verify =>

[RI

OPTION NUMBER

the location address of ~

this instruction

ASSEMBLY
OPTIONS

E.g. Assemble

Abbreviations:
addr a$-prefixed hex address
const a$-prefixed hex

constant; as an operand
of DB, const must be a
Single-byte value. A
String of constants, such
as (DB const [SP] const
[SP] const... etc) is
valid
a String of characters
enclosed in single quotes
(e.g. ‘AB3%9K10’)
any valid symbolic
operand

=>2_ [RET]

INSTRUCTION

AS9F
($ED46),A
A,(HL)
A,(IY +d)

01234567

Display full

listonscreen NY NY NY NY

Load m/code

into memory

Copy screen

to printer

Verify labels,

symbols &

syntax

Display

symbol table

on screen

NNYYNNYY

NNNNYYYY

Teer Ty) TF

EELS YF

Y= This facility enabled
N = This facility disabled

causes the source text to be
assembled with error-checking,
and theresulting machine code to
be loaded into memory as directed

by the ORG pseudo-op-code. The
symbol table is displayed on the
Screen, but no assembly listing
appears on the screen, and there
is no output to the printer.

Any option number can be
preceded by 1, which gives a
double-line display if the screen
list facility is enabled.

If an error is found during
assembly, a message will appear
on the Error Line, assembly will
cease, and the screen will display
the source text with the faulty
instruction appearing on the Edit
Line.

280
ADDRESSING MODE
Register (Direct)
Immediate
Absolute (Direct)
Register (Indirect)
Indexed (Indirect)
Implied

LINKING MACHINE
CODE AND BASIC

Once you're familiar with both
Champ and Assembly language
programming, you'll probably
want to be able to call special-
purpose machine-code routines
from BASIC programs, rather than
write entire programs in machine
code. The easiest way of doing
this is:
1) Using Champ, develop the
Assembly language routine until
it works.
2) From<ASSEMBLE> mode,
SAVE the Assembly language
routine to tape for future
reference.
3) Assemble the routine into
memory, choosing an ORG
address near the top of User RAM
(See your computer User Manual
for Memory Map and advice).
4) From <DEBUG> mode,
SAVE the block of memory
containing your machine code to
tape.

5) Quit Champ.
6) Write your BASIC program,
Starting with the instructions
necessary to set the Top of User
RAM pointers to an address
Safely below the ORG address of
your routine. Follow those
instructions in the program witha
LOAD instruction that will load
your machine code routine from
tape to the location from which it
was SAVEd (consult your User
Manual).
7) Whenever you need to execute
the machine-code routine in the
BASIC program, use aCALL, SYS,
or USR instruction with your
routine’s ORG address.
8) Save the BASIC program as
usual.

lf you exit from Champ to BASIC,
and type LIST, you should see an
example of this technique at
work: When you LOAD Champ,
you load only the short BASIC
loader program which you see;
when this is executed, it LOADS -

Champ itself as a machine code
file into memory, then calls it as a
machine code routine.

CHAMP ERROR
MESSAGES

Error messages appear on the
Error Line in all modes except
<DEBUG>, which _ prints
‘ERROR’ at the current cursor
position.

MEANING
A syntax or
format error in

the Label Field.

A syntax or
format error in
the Instruction

Field.
A syntax or
format error in

the Operand
Field.
The Label or
Symbol
displayed on
the Edit Line
has not been
assigned an

address or a -
value.

The relative
jump in the
instruction on

the Edit Line
requires a
displacement of
more than 127

bytes forward
or 128 bytes
backward.

Assembling the
instruction on

the Edit Line
into memory
would overwrite
CHAMP itself,

or some
protected
memory, or
would be out of
range.
The operand of
a <DEBUG>

command
contains illegal
symbols, or is
too large a
quantity, or is a
bad address,
etc.

MESSAGE
LABEL ERROR

INSTRUCTION
ERROR

OPERAND
ERROR

UNDEFINED
LABEL

JUMP OUT OF
RANGE

OVERFLOW

ERROR

you can execute it in <DEBUG> mode by typing
GC@@2 ENTER. (In other words, G followed by the
Starting address.) If all is well, the <DEBUG> prompt
will return almost immediately, telling you that your
program has been executed.

You might like to enter and run the BASIC program
in order to appreciate the difference in speed between
the two languages. You could even modify the
programs to put an extra loop around the outside of
the two loops already present and use a stop-watch
to calculate exactly how much faster machine code
is. Be prepared to wait a long time for the BASIC!

DISASSEMBLY LISTING — Z80
co02——<(‘éKSASCté‘iUD” A$64
C004 320000 LD ($CQOQ),A
C007 «= SEFF_—sédLD ASFF
co09 «= B2M1C0_-—s«LD ($C001),A
cooc «= B8ADICD_-—Ss«LD A($C001)
COOF =. 3D DEC A
C010 «= «OFT ~—S sR NZ, $C009
C12 3A00C0 LD A($CQQQ)
C015 «=S sD DEC A
Ch16 «= (PEC UR NZ,$C004
cog «=—s« RET

PeDEMON. |

$O45D

DOO Ol ps Li

o~
im if ty id

0

nf

DD awe ONTADMO Team
ij

MOCO DMA Doe es Rane

PEPRPLPEPEPHEPRERERREG

no 4

ECON ESENESIUISISEUDSCU eet 0000) 08 0 AP GNrOMMOOOO IAM Oh NOE HOMDROOROOOrPODIONUMO wo IRORHOWMOD WIGUIDVOroOMr SOUONGOGOGHOCOOGCOGCOGCGG.

=
3
ay

‘=
<J
cr
=
m4
Ri
f2

L.
ey

a)

L.
("CIE Cy ei piPipimin-.

icassembleoAssemble =>11

ok
Q Ge m Me

Oe PU e Oe 9VOu9 Or. ge

A, $25

e, $F?

OS 600% re Sige Baer: oO
Fssasl

pe DEDO«s
%

LABGLe2 QOoo2

0

HOOUONYDONONOMN IMO HORe

‘J

OeRQOOSIOOOPR WAG WA WOR

=

& Oe WHnNOoOOMMOre IOdOO WDM HHOOWAGWVORSAIOOMNS Woo PNDOKUG BOOM THOME Oy

fy

Bow x"

* = =

ene ee om OD

oe
ape CC ot BP a rm tte pty >

a, # ed

~ ZIAAO
Op Coe

Oh. o> O- Tero Zoc
% * Ch? Gy gs

“y fud # a4

fit fi SS ®

ie one a
pe Oe Or 4

SUNN AINSI ASSIS sds

2s Zohe

AS TO AS AD RO AD 1 PORTO 1 PD FP) be HAP ke OOO RE OOO WIAMMh® HeRMOVOMODAMAVONDaMNoor NVNAOOVOGOJONOON NGO AGOODMHANIAD HHH MOM Ne WAAHOOVMONG HOMOM VASO Aanig sh HOSGCGgnOegrhige WeieMm GAINEOWS WON HI WT AMOMGOSSGMaAnoegngnvuaeAoo?

EMOMSTRAT TON 242% 4% ee

ee ee
seen

Getting out of <EDIT> mode 1
When the Edit Line is blank in

<EDIT> mode on the Spectrum,
ENTER should toggle <INSERT>
mode, but may cause an error
message. Type a semi-colon (;), thus
turning the line into a comment.
ENTER will then toggle <INSERT>
mode, and you can delete the entire
spurious line from <EDIT> or
<ASSEMBLE> mode.

Label error, 2
The second occurrence of LABL1

in this example is detected as a label
error or erased.

Instruction error, 3
Champ is here being used on a

Spectrum. However, the assembly
language instruction ST does not
exist in Z80 code, so an instruction
error is flagged when the line is
entered

Operand error, 4

Here Champ is being used on a
Commodore 64. The 6502 assembly
language instruction BNE requires an
operand, So trying to enter the line
without one causes an operand error.

Assembly error, 5

Not all errors are trapped at entry
time. Here, the first line of code
contains a logical error, which has
been caught. Hitting any key will
restore <ASSEMBLY > mode.

Completed assembly, 6

The assembly has been
successful, as the message shows.
Because the option chosen was 11,
each line of assembly listing
occupies two screen lines; option 1 is
logically equivalent, but allows only
one screen line per assembly line.

Disassembly function, 7

Q, the disassembly function in
<DEBUG> mode, produces a block of
lines of disassembly; hit ESCAPE to
return to <DEBUG> and then hit any
key to disassemble the next block.

Memory display function, 8
D, the memory display function in

<DEBUG> mode shows the hex
contents (and their ASCII equivalents)
of a block of memory; hit ESCAPE or
any key to return or continue,
respectively. This is the Z80 display,
which shows six bytes per line. The
6502 display shows eight.

Hands on — BBC Micro and Commodore 64
The <ASSEMBLE> prompt on the bottom line of the
screen display is telling you that the assembler is
waiting for you to do something. We want to enter our
first program so tell Champ you want to EDIT by
pressing ESCAPE on the BBC Micro, or <— on the
Commodore 64. The prompt changes to <EDIT> and
shows a flashing square at the cursor position. The
first thing you need to put in is a comment to say
what the program does, so type a semi-colon together
with the title of the program and any other information
you think might be useful. Press RETURN before you
reach the right-hand side of the screen. The line you
have just typed will move up one place and the cursor
will start flashing at the beginning of the new line.
The prompt will now show <INSERT>, because you
are now inserting new information into the assembler.
If you make a mistake before pressing RETURN, then
use the cursor keys (which operate as normal) to
correct your mistake, and just type over any mis-spelt
words. If you pressed RETURN before noticing your
error, don’t worry; you Can correct it in a minute.

As you can see, you can also use blank comment
lines to space your program listing out to make it
more readable.

CHAMP EXAMPLE PROGRAM
6502 VERSION

ORG $C00O

| VARIABLES

| DBO
J DBO

PROGRAM

' 1Q FOR | = 100 10 1 STEP-1
LDX #964

NEXT| STIX |
0 FOR J = 255 10 1 STEP-1

LDX #$FF
NEXT) SIX J
- 30 NEXT J

LOX J
DEX
BNE NEXT J

AQ NEXT |
LDX |
DEX
BNE NEXT |

; 50 RETURN: REM TO BASIC OR CHAMP
RTS

When you have finished typing the introductory

comment, and the cursor is at the beginning of a new

line, try typing RETURN once more. You will find that

you go back to <EDIT> mode. In <EDIT> mode, you

can use the cursor keys to scroll the listing up and
down and move the cursor through any line you may
want to change. Correct any mistakes you may have

made (but don’t press RETURN) and move the cursor

back down to the bottom of the text. Now press

RETURN again and you should once more have the
cursor on a blank line with text above it and nothing
below. If not, use RETURN to toggle between
<EDIT> and <INSERT>, and use the cursor keys to
get you to the correct position at the bottom of the
text.

If you type a space without a semi-colon, the
cursor will skip to the second coloured field (column),
because Champ knows that if you type a space here,
you don’t want anything in the first field. Now type in
ORG followed by a space. Once again, when Champ
gets the space, it knows that it has to skip to the next
field. So you can now complete the ORG instruction
by typing $CQQ@ followed by RETURN. All
instructions except comments are typed into the
assembler in this way; when you've finished using a
particular field (or don’t want to use it at all), use the
space bar to move to the next field or RETURN to
move to the next line.

lf you want to type a line containing a label, then
Start in the LABEL field (the leftmost one), type your
label followed by a space, and continue with
instruction and operand fields.

Some typing errors will be recognised by Champ
when you press RETURN and will cause an error
message to be displayed. Possible errors at this point
are LABEL, INSTRUCTION or OPERAND errors.
These correspond respectively to the three coloured
fields in the assembler display, so if you get an error
message you should find your mistake in the field
referred to in the error message. Use the cursor keys
to go. back and correct the mistake when you've
found it.

When you've typed the listing in, press RETURN
one last time to return to <EDIT> mode, then use the
cursor keys to run through the listing to ensure that it
looks like the example. When you are satisfied, press
the ESCAPE key to return to <ASSEMBLE> mode
and SAVE your text, by using the W command. (This
can be loaded back at any time, using the L
command.) This is a good habit, as it is easy to lose
what you are doing when using machine code, since
you can't use STOP or Control/C to stop a runaway
program. :

Having SAVEd your listing, you can now assemble
it. Type A (for assemble), and CHAMP will display
ASSEMBLE=> on the prompt line. Type in 3 as
your assembly option — this tells the assembler
what sort of listing you want and is explained more
fully elsewhere in the manual. Press RETURN at this
point and assembly should commence.

If all is well, Champ will print a version of your
listing with some extra numbers on the left-hand side.
The leftmost column of numbers shows the
addresses to which each instruction has been
assembled. They may look a little odd because they
are expressed in hexadecimal notation. Notice that
the addresses do not increase after comment lines:
this is because comments do not produce any
machine code. This is reflected in the second two
columns of numbers, which contain the machine code
values loaded into memory. You can see that
comment lines once again produce no machine code.

After the listing you will also see a table of all the

labels you used: this is called the symbol table and
_ Champ produces it for your convenience. It enables

you to find the parts of the program you want quickly.
Note that addresses of variables and jump labels

are held in the symbol table in the same way; this is
because the microprocessor holds them in a similar
way in its internal registers. |

Having successfully assembled our example
program, we want to examine the program as it is in
memory. Enter the monitor part of Champ by pressing
M and RETURN. The screen should now display the
DEBUG prompt.

The start address of your program is not $CQ@Q,
but $C@2, because of the space that you reserved
for two variables. So type Q (for disassemble),
followed by CQ@2 (you don't need a $ sign in
<DEBUG> mode).

When you press RETURN, you will see a listing
similar to the code you entered, but without the
comments, variables, labels and pseudo-ops. You will
remember that these produce no machine code. (If
you now press any key, the Disassemble feature will
display a further block of memory; it will do this
repeatedly, until you press ESCAPE (BBC) or <—
(C64). To return to the disassembly you will then
need to type QCVA2.)

lf this listing doesn’t look like the machine code
you typed into the assembler then press ESCAPE,
return to <ASSEMBLE> mode by typing A RETURN

-and reassemble the program, checking that you use

Points to remember
LABELS must start with a letter, and must not be
more than six alphanumeric characters long.

INSTRUCTION MNEMONICS must be standard
6902 or Z80: two, three, or four letters long.

OPERANDS must follow standard 6502 or Z80
formats. They can contain arithmetic expressions
comprising symbols or hex constants and a ‘+’ or
‘—’ operator, and can fill, but not exceed, the entire
operand field.

In <EDIT> mode you can change the text on
the Edit Line, and you can move the entire text file up
and down on the screen using the following keys (on
the Spectrum, replace the control key by CAPS

~ SHIFT).

KEY EFFECT
[T] Moves the Edit Line up one line

[Ll] Moves the Edit Line down one
line

[(CTRL]+[T] Moves to the top of the text

[CTRL]+[B] Moves to the bottom of the text

[CTRLJ+[U] Moves text up one screen page

[CTRL|+[D] Moves text down one screen
page

(CTRL]+[Z] Deletes the contents of the Edit
Line

DISASSEMBLY LISTING — 6502

C002 A264 LDX #964
C004 BEQOCB = STX SCO
CQQ7 A2FF LDX #OFF
C009 BEQICB = = STX $CO01
CORC AE@1C@ LDX $0001
COOF CA DEX
C010 DOF9 BNE $0009
C012 AE@@C@ LDX $C000
CQ15 CA DEX
C16 DOEE BNE $0004
C018 60 RTS

the correct option and that when you finish the
assembler says that it found no errors.

And now for the moment of truth! If the listing
printed by the disassemble command looks correct,
you can execute it in <DEBUG> mode by typing
GCQ@2 RETURN. (In other words, G followed by the
starting address.) If all is well, the <DEBUG> prompt
will return almost immediately, telling you that your
program has been executed.

You might like to enter and run the BASIC program
in order to appreciate the difference in speed between
the two languages. You could even modify the
programs to put an extra loop around the outside of
the two loops already present and use a stop-watch
to calculate exactly how much faster machine code
is. Be prepared to wait a long time for the BASIC!

These keys without [CTRL] have the same effects in
<ASSEMBLE> mode, but you cannot delete or
otherwise modify your text in that mode.

If your program executes successfully, then the
<DEBUG> prompt and cursor will return to the
screen. The ‘D’ command can now be used to display
the contents of the memory that the program should
affect. If the results are successful, then you might
want to SAVE the machine code (called the object
code to distinguish it from the assembly language
source code) to tape, using the ‘W’ command in
<DEBUG> mode. Having done that, you might like to
try altering some of the object code in memory using
the ‘@’ command, also in <DEBUG> mode. Once
you've started to understand roughly what’s going on
in Champ, you should simply play around with any and
every command or option that meets your eye — you
Cant damage anything and it’s really the only way to
learn. .

Developed for Home Computer Advanced Course by
Personal Software Services, 452 Stoney Stanton Rd,
Coventry (0203) 81346.

Software — ©PSS 1984
Manual Text — ©Orhis 1984
Software Authors — D. Ritchie, T. Stoddard
Manual Authors — B.R. Morris,

C. D. McCausland
Editor — D. Cohen

