5

error message. Use the cursor keys to go
back and correct the mistake when you've
found it.

When you've typed the listing in, press
ENTER one last time to return to {EDIT)>
mode, then use the cursor keys to check
over the listing to ensure that it looks like
the example. When you are satisfied, press

ESC to return to{ASSEMBLE)
mode and SAVE vyour text using the S
command (this can be loaded back at any
time using the L command). This is a good
habit, it is much easier to lose what you are
doing when using machine code since you
can’t use CTRL—-C or STOP
to stop a runaway program.

Having SAVEd your listing, you can now
Assemble it. Type A (for Assemble), and
CHAMP will display the ASSEMBLE=)

prompt. Type in a 3, this is your assembly
option, it tells the assembler what sort of
listing you want and is explained more fully
elsewhere in the manual. Press ENTER at
this point and assembly should commence.

If all is well, CHAMP will have printed a
version of your listing with some extra
numbers on the left hand side. The left
most column of numbers show the addresses
to which each instruction has been assem-
bled. They may look a little odd because
they are expressed in hexadecimal notation.
If your are not sure of this, then refer to
your Z80 book for a full explanation before
proceeding.

Notice that the addresses do not increase
after comment lines, this is of course because
they do not produce any machine code,

This is also reflected in the second two
columns of numbers, these contain the
actual machine code values loaded into
memory. You can see that comment lines
once again produce no machine code values,
as you would expect.

After the listing you will also see a table of
all the the lables you used, this is called the
Symbol Table and CHAMP produces it for
your convienience when using it to produce
large amounts of machine code. It enables
you to find the parts of the program you
want quickly.

You might like to note that addresses of
variables and jump labels are held in the
symbol table inthe same way, this is because
the microppecessor holds them internally in
a similar way in its registers.

Having successfully assembled your example
program, enter the monitor part of CHAMP
by pressing M then ENTER. The_screen
should now display the { DEBUG)
prompt.

Now we want to look at the program you

assembled into memory. The start address

of your program is not $C@#@, but $CP¢2,

because of the two variables you reserved.

So type Q (for dissassemble) followed by

C§92 (you don't need a § sign in
DEBUG)» mode).

chd2 3e64 LD A §64

cods 3209cé LD ($Copd) A
CQW 3EFF LD A$FF

cédo 3201cd LD ($cop1) A
chgc 3adicy LD A, ($Céd)
CcodF 30 DEC: A
ch1d 2¢F7 JR NZ, $Cido
c12 3adpcd LD A, ($CoPP
c¢15 3D DEC A
chie 2§eC JR NZ §Cipa
c§18 co RET

FIGURE 2

When you press ENTER, you will see a list-
ing similar to Figure 2, without comments
and Pseudo-ops. You will remember that
these produce no machine code.

If this listing doesn’t look like the machine
code you typed in to the assembler then
return to € ASSEMBLE » mode by
typing A,ENTER and REASSEMBLE the
program, checking that you use the correct
option and that the assembler finishes by
saying that it found no errors.

And now for the moment of truth, if the
listing printed by the dissassemble command
looks correct, you can execute it by typing
GCPP2 ENTER. If all is well, the ¢ DEBUG
2 prompt will return almost immediately,
telling you that your program has completed
execution.

You might like to type in the BASIC pro-
gram in order to appreciate the magnitude
of difference in speed between the two pro-
grams. You could even modify the programs
to put an extra loop around the outside of
the two loops already present and use a
stop-watch to calculate exactly how much
faster machine code is by using the formula: -

BASIC TIME (SECONDS)

MACHINE CODE TIME (SECONDS)
Be prepared to wait a long time for the
BASIC!

When entering a new program, remember.
LABELS must start with a letter, and must
not be more than six alphanumeric charac-
ters long.

INSTRUCTION MNEMONICS must be
standard Z80: two, three, or four letters
long.

OPERANDS must follow standard Z80
formats. They can contain arithmetic ex-
pressions comprising symbols or hex con-
stants and a ‘+’ or ‘—’ operator, and can fill,

7

but not exceed, the entire operand field.
COMMENTS must start on a new line with
;. They can fill, but not exceed, the entire
line, and are not subject to syntax or format
checking.
When you have successfully typed in the
program, enter € EDIT) mode. In this
mode you can change the text on the Edit
Line, and you can move the entire text file
up and down on the screen using the follow-
ing keys:

KEY EFFECT

f Moves the Edit Line up
one line.

* Moves the Edit Line down
one line.

(CTRL)+(T) Moves to the top of the text

(CTRL)+(B) Moves to the bottom of
the text.

(CTRL)+(U) Moves text up one screen
page:

(CTRL)+(D) Moves text down one
screen page.

(CTRL)+(2) Deletes the contents of the
Edit Line.

These keys without (CTRL) have the same
effects in ASSEMBLE /> mode, but
you cannot delete or otherwise modify your
text in that mode.

If the results are successful, then you might
want to SAVE the machine code (called the
Object Code to distinguish it from the
Assembly language Source Code) to tape,
using the ‘W’ command in € DEBUG) .
Having done that, you might like to try
altering some of the object code in memory
using the ‘@' command, also in € DEBUG

. Once you've started to understand
roughly what’'s going on in Champ, you
should simply play around with any and
every command or option that meets your
eye— you can’t damage anything, and it's
really the only way to learn.

< EDIT)» MODE COMMANDS

In € EDIT » mode, source text isdisplayed
with the cursor on the Edit Line, and{EDIT
> on the Command Line. Text on the Edit
Line can be overwritten or deleted (using
(DEL) or (SP). (RET) causes the Edit Line
contents to be checked for syntax and
format. An error message will appear if the
line is faulty, and the text will remain on
the Edit Line. If the line is acceptable, it
will be entered into the source text, and
mode will change from € EDIT) to €

INSERT) (RET) toggles these two
modes, while (ESC) toggles € EDITD and
< ASSEMBLE » modes.

The following keys can be used to move the
source text on the screen, assuming the text
on the Edit Line is correct. If a line is

edited &text is valid, then any of the following
keys has the effect of entering the new line
into the source text without changing the
mode.

CHAMP

Assembler/ Monitor package
for the
MSX range of computers

(c) P.S.S. 1984

452, Stoney Stanton Road,
Coventry,
CV6 5DG.

Telephone: (0203) 667556

8

N.B. The text movement keys have the
same effects when used in € ASSEMBLE
mode, but they then do not require (CTRL)
to be pressed. Thus (U) in € ASSEMBLE)
mode moves the screen text up one page.

KEY 1 EFFECT

Moves one line up the text.

‘ Moves one line down the
text.
(CTRL)+(U) Moves the screen text up
one page.

(CTRL)+(D) Moves the screen text
down one page.

(CTRL)+(T) Moves to the top of source
text,

(CTRL)+(B) Moves to the bottom of
source text.

(CTRL)+(2) Deletes the Edit Line

contents,

(ESC) Enters ¢ ASEMBLE)»
mode,

(RET) Enters. € INSERT >

CHAMP

Assembler/Monitor package for the
MSX range of computers.

To Load

(1) Reset your computer

(2) TypeBLOAD " PSS ",R

(3) Ensure the tape is fully rewound
(4) Press play on your tape player
(5) Press ‘RETURN’

(6) The program will automatically execute
once loaded.

The Package

Champ will auto—run when loading is
complete, so, having isssued the LOAD
command , you need do nothing until the
screen clears and displays the copyright
message. Stop the tape, remove it, and re-
place it with a blank data tape if you intend
to save program files from Champ.

(Assemble) mode

is used after you have typed in an Assembly
language program, in order to assemble it
into machine code.

<lInsert) mode

is what you use to type in an Assembly
language program.

(Ecit) mode

enables you to modify an existing Assembly
language program.

{Debug) mode

allows the inspection or modification of the
contents of the memory, or the execution
of a machine code program.

Both € ASSEMBLEY® and {DEBUG)

modes are command modes. In these modes
various keys represent commands which
make something happen to your program
or to memory. ,On the other hand,
CINSERT and €EDIT D are text modes;
with these you can move program text
around on the screen, and add to, or modify
it.

You can change from one mode to another
as shown here:

(E|DF(RET) —2(nserT)

(ij)
(A%SEM%_E)
(M) (A)

(Dgsuc;)l

You now have CHAMP successfully |oaded

into your computer, you will see the € ASSE
MBLE) prompt. At this point, the
computer is waiting for you to type in an
assembly language program, but don’t do

anything yet.
see figure 1.

© CHAMP EXAMPLE PROGRAM

oRG §cgpd

VARIABLES
| DB 0
J. »20BE0
; PROGRAM
;' 10FORI=100TO 1 STEP—1
LD A, {64
NEXTI LD (1 ,A
;' 20FORJ=255TO 1 STEP-1
LD A, §FF
NEXTJ LD () ,A
: 30 NEXT J
LD A, (V)
DEC A
JR NZz,NEXTJ
; 40NEXTI
LD A, (1)
DEC A
JR NZ, NEXTI
H 50 RETURN: REM TO BASIC OR
CHAMP
RET
Figure 1

The first thing to notice is that there are a

lot of semi colons (;) about. These may
look strange, but are very simply the equiv-

alent of the BASIC REM. In machine code

programming they are known as COM-—

MENTS, and they are extremely important

if you want to understand something you

may have written weeks ago. You can put

anything you like inside a comment, which

must begin on a new line. | have put the
equivalent BASIC program lines in com-
ments so that you can see how the machine

code instructions can be made to operate in
the same way as BASIC.

Any line which does not start with a ; isan

assembly lapguage statement. The first one
is ORG $CP@Pg. This is not a machine code

instruction but is short for ORIGIN, it tells
the assembler where to put your program
when you tell it to turn your assembly lang-
uage into machine code. In BASIC, you
did't need to worry about where your pro-
gram was because the interpreter looked

after all that for you. Now, you have the

whole of the computer under your control,
and that includes where you want your
program to go.

2

3

You also tell the assembler where to put
your variables. Once again, BASIC used to
do all this for you, but BASIC isn’t as good
at using the full power of the computer as a
human being is, so you have to do it your-
self. For large machine code programs it is
usually a good idea to put all your variables
together in one block, but for small pro-
grams it's okay to put them next to the pro-
gram for clarity. The next few assembly
language statements in our example tell the
assembler that you want to use two variables,
| and J and that they will be found right at
the beginning of the program straight after
the ORIGIN address. Because we are not
going to use numbers larger than 255, we
only need one byte for each of the two
variables, so the DB (Define Byte) statement
is used. If we had wanted to use larger num-
bers we could have used the DW (Define
Word) command to reserve 2 bytes for each
variable. BASIC would have automatically
used up 5 bytes for each of | and J. The
storage define commandsverysimply tell the
assembler not to use an area of memory
because you're going to store some variables
there. They also tell the assembler how big
each area is and what the areas are going to
be called. (In this case | and J).

The storage commands, the ORG command
and the COMMENT are all called Pseudo-
ops (ops short for operations) because the
assembler doesn’t generate any machine
code from them, they are just there for your
convenience.

All the other assembler language statements
will be translated by the assembler into exe-
cutable machine code instructions. That is,
instruction codes which will cause the
microprocessor to do something for you.
Among these are Load a register, test a flag
and Jump to a new address. These make up
the rest of the example program listing,
their operation is covered in several good
text books on the subject. (See Bibli-
ography).

If you're not too clear on any of the three
types of instruction, Pseudo-ops, Comment,
Org or Storage, then please reread this
section, it's not at all difficult once you get
the hang of it, but do take it at your own
pace.

Now that we have covered the different
types of statement understood by the
assembler you can enter the example pro-
gram.

Hands On!

The (ASSEMBLE) prompt is telling
you that the assembler is waiting for you to
do something. We wan’t to enter our first
program so tell CHAMP you want to EDIT
by pressing[ESC) The prompt
changes to € EDIT > and shows a flash-
ing underscore at the cursor position. The
first thing you always want to put in is a

4

comment to say what the program does, so
type a semi colon together with the title of
the program and any other information you
think might be useful. Press Enter before
you reach the right hand side of the screen,
the line you just typed will move up one
place and the cursor will be flashing at the
beginning of the new line. The prompt will

now show INSERTQ , this is because
your are now inserting new information into
the assembler. If you make a mistake

before pressing ENTER, then use the cursor
keys (which operate as normal) to correct
your mistake, just type over any mispelt
words. If you pressed ENTER before
noticing your error, don’‘t worry, you can
correct it in a minute.

As you can see, you can also use blank
comment lines to space your program listing
out to make it more readable.

When you have finished typing the top com-
ment, and the cursor is at the beginning of a
new line try typing ENTER once more, you
will find that you go back to {EDIT)
mode. In {EDI mode, you can use
the cursor keys to scroll the listing up and
down and move the cursor through any line
you may want to change. Correct any mis-
takes you may have (but don‘t press
ENTER) and move the cursor back down to
the bottom of the text. Now press ENTER
again and you should once more have the
cursor on a blank line with text above it and
nothing below. If not, use ENTER to toggle
between €EDITY> and €INSERT)
and use the cursor keys to get you to correct
position at the bottom of the text.

Now type a space without a semi colon, the
cursor will skip to the second field
(or column), because CHAMP knows that if
you type a space, you don’t want anything
in the first field. Now type in ORG followed
by a space. Once again, when CHAMP gets
the space, it knows to skip to the next field,
and you can now complete the ORG inst-
ruction by typing $C#B@ followed by
ENTER. All instructions except comments
are typed into the assembler in this way;
when you‘ve finished using a particular field
(or don’t want to use it at all) then use the
space bar to move to the next or ENTER to
complete the line.

If you want to type a line containing a labe!,
then it is exactly the same. Start in the
LABEL field (the leftmost one), type your
label followed by a space, then carry on
with instruction and operand fields.

Some typing errors will be recognised by
CHAMP when yo:. press ENTER and will
cause an error message to be displayed.
Possible errors at this point are LABEL,
INSTRUCTION or OPERAND errors.
These correspond respectively to the three

fields in the assembler display, so
if you get an error it is most likely that your
mistake will be in the field referred to in the

13

5. Quit Champ

6. Write your BASIC program, starting
with the instructions necessary to set the
Top of User RAM pointers to an address
safely below the ORG address of your
routine. Follow those instructions in the
program with a LOAD instruction that will
load your machine code routine from tape
to the location from which it was SAVEd
(consult your User Manual).

y /4 Whenever you need to execute the
machine-code routine in the BASIC program
use @ USR instruction with your routine's
address.

8. Save the BASIC program as usual.

CHAMP ERROR MESSAGES

Error messages appear on the Error Line in
all modes except DEBUG , which
prints ‘ERROR’ at the current cursor
position.

Message Meaning

Label Error A syntax or format error in
the Label Field.

Instruction A syntax or format error

Error in the Instruction Field.

Operand A syntax or format error in

Error the Operand Field.

Undefined The Label or Symbol dis-

Label played on the Edit Line
has not been assigned an
address or a value.

Jump out of The relative jump in the

Range instruction on the Edit
- Line requires a displace-
ment of more than 127
bytes forward or 128 bytes

backward.

Assembling the instruction
on the Edit Line into mem-
ory would overwrite
CHAMP itself, or some
protected memory, or
would be out of range.

Error The operand of a DEBUG
command contains
illegal symbols or is too
large a quantity, or is a bad
address etc.

Overflow

ASSEMBLE MODE
COMMANDS

Find = string (RET)

Searches the Assembly language program
from the start of the program for the first
occurrence of the given string.

Next= string (RET)

Searches the Assembly language program for
the next occurrence of the given string. The
search begins from the end of the program

line currently on the Edit Line.

Find= (RET) and

Next= (RET)

As above, but this searches for the string
defined in last ‘F’ or ‘N’ command. While a
search is preceeding, the message ‘searching’
appears on the Error Line. If the search is
successful, the line containing the string
being seached for appears on the Edit Line.
If the search is unsuccessful, the last line of
the program appears on the Edit Line.

Load =) Save=) Verify =)

These must all be followed by a filename;
double quotes are not needed, but the file-
name must be legal for user's machine.

Print =) expression (RET)

This prints the hex value of the given ex-
pression on the Error Line, eg.

Print=> $F8-$C1 $37

symbols already defined in source text can
be used in expressions; but only one
Operator (+ or—) is allowed per expression.
Quit=>)

This quits Chamg and returns control to the
BASIC system only if (Y) follows the

prompt; any other response aborts the
command.

(M)

Enter DEBUG mode. Return from
there to ASSEMBLE mode by press-
ing (A) (RET).

(ESC)

Toggle EDIT and ASSEMBLE
modes.

Assemble =) (option number) (RET).

This assembles the source text in one of a
variety of ways, depending upon which
numerical option is chosen.

KEY PROMPT FUNCTION

(F) Find = > Find a string

(N) Next = > Find a string

(L) ' Load=» Load a source
file.

(w) Save. => Save a source
file

(V) Verify =3 Verify asource
file

(P) Print =) Print value of
expression

Q) Quit=> Quit to BASIC

(M) Enter

DEBUG

mode

(ESC) Enter EDIT
mode

(A) Assembles) Assemble
program.

14

15 16
ASSEMBLY OPTIONS

To tell the asscmbler what to do, you
must choose from the table below, add the
numbers together and type the resulting
number in reply to the Assemble prompt.

Option No.

Syntax check only 0
Display full list on screen ol
Load M/Code into memory +2
Copy screen to printer +4
Double line list +10
Supress display of symbol table +40

EG.— To assemble machine code into

memory, with a double line listing to the

printer you type 17 (RET).

CHAMP

Full list 1

M/C to memory 2
Screen to printer 4
Double line list 10

Continuation
Sheet

Note These are hexadecimal numbyrs, so bear

this in mind when adding up.

Assemble =) 2 (RET)
causes the source text to be assembled with
error-checking and the resulting machine
code to be loaded into memory as directed
by the ORG pseudo-op-code. The symbol
table is displayed on the screen, but no
assembly listing appears on the screen, and
there is no output to the printer,
If an error is found during assembly, a
message will appear on the Error Line.
assembly will cease, and the screen will dis-
play the source text with the faulty instruc-
tion appearing on the Edit Line.

Biblography,

Book Author Publisher

o — o ———
" Programming the Z-80 Zaks SYBEX

Z-80 Assembly Language Leventhal
Programming

Osbourne/ MCGraw Hill

USEFUL ADDRESSES

Source stored at: $ AA@PD
Symbols stored at: $ E@pp
Best ORG Address: $. Coo¢

To re-enter CHAMP type:.- DEF USR & HB849@ (For Normal Entry)

DEF USR & H84P3 (To clear source buffer)

To Execute CHAMP Type:- PRINT USR (@)

9
{INSERT) MODE COMMANDS

It is this mode that you actually type your
Assembly language program into the
Assembler. = The Command Line shows
< INSERT) |, and a flashing cursor ap-
pears on the Edit Line. The Edit Line (and
the whole screen) is divided into three
coloured columns, corresponding to the
Label Instruction, and Operand Fields of an
Assembly language program.

Label Field

A label is any alphanumeric string of up to
six characters. There must be a letter in the
first position of the Field. A label does not
require a colon (or any other character) as
delimiter.

Instruction Field

Instructions are Assembly language mne-
monics as in Zilog Z80 specifications. They
may be two, three or four letters long, start-
ing in the first position of the Field.

Operand Field

Operands may be hex constants (which
must be preceded by §), labels, symbols, or
expressions comprising two operands seper-
ated by + or —. Decimal, octal, and binary
constants are not permitted. Operand
formats for the various addressing modes are
as specified by Zilog.

Text entry in € INSERT » is subject to
Field Formating. This means it is impossible
for you to type a seven-character label, or a
five-character instruction. Typing an extra
character, or hitting (SPACE), causes the
cursor to skip to the first position of the
next field.

The (CRSRR), (CRSRL), and (DEL) keys
act as normal in € INSERT » mode —
subject to Field Formating — but the delete
keys acts on the cursor character rather than
on the character to the left of the cursor.

When you hit (RET) in € INSERT)
mode, the contents of the Edit Line are
checked for syntax and format; if an error
is found, then a message appears on the
Error Line. If no error is found, then the
contents of the Edit Line enter the source
text, and the Edit Line is cleared for the
entry of a new line. Hitting (RET)when the
Edit Line is blank toggles between¢ EDIT)
mode and € INSERT » mode.

< DEBUG) MODE COMMANDS
This mode combines the following functions:
MEMORY MONITOR — allows you to
inspect and alter the contents of memory.

HEX DISSASSEMBLER — allows you to
interpret the contents of memory as machine
code to be converted back into Assembly
language.

DEBUGGER allows you to execute
machine code programs in an error-trapping
environment.

& DEBUGY is acommand mode, but the
Command Line/EditLine/Field Format
display of the other modes is not used: the
screen is a blank page showing only the
prompt and a cursor, In this mode all con-
stants without the ‘§’ prefix, although the
‘H’ command supports decimal constants.

ABBREVIATIONS

addr any hex address

saddr start address of a block of
memory.

faddr finish address of a block of

memory (=1* address of
last byte or block).

daddr destination address in hex.

hx a hex value (hx € = FF)

regname CPU register name (see
below).

expr any arithmetic expression

in one or two operands;
operands may be decimal
constants, ‘$’ — prefixed
hex constants, or legal
symbols; operators are ‘+*
or'—',

bystr a string of hex byte values
seperated by spaces.

chstr a string of characters
(exactly as it appears, no
seperators).

CPU REGISTER NAME
ABBREVIATIONS

A= Accumulator; F = Flag/Status Register;
H,LBCDE, = Registers; SP = Stack
Pointer IX, 1Y = 1X, IY registers.

COMMAND EFFECT

@ addr or 0 addr Memory from the given
address onwards displayed
one byte at a time, in hex
and ASCII equivalent. Hit
(RET) to advance to next
byte, hit (ESC) to return
to command level, or type
a hex constant to replace
the existing content of the
byte.

A Return to ASSEMBLE)
mode.

D addr faddr Memory from the givea

address onwards is dis-
played in screen pages; hit
any key to continue, or
(ESC) to return to com-
mand level.

F saddr faddrhx Every byte between saddr

and faddr is filled with hx.

10

1

K
M daddr
saddr faddr

Q addr

G addr
C addr

Bn=addr

R regname

J addr

H expr

S bystr

Nchstr
w

Print source and symbol
table usage

The block of memory bet-
ween saddr and faddr is
copied to the block start-
ing daddr.

Memory from addr onwards
is disassembled; hit (RET)
to contiue, and (ESC) to
return to command level.

The code starting at addr is
executed (returnable).

Execute from addr (non-
returnable).

A breakpoint number n,
(between 1 and 8) is set at
addr, to cause a break in
execution of any program
which accesses the contents
of addr as an instruction;
press (C) (RET) to continue
from breakpoint.

Eliminates breakpoint n.

Displays the addresses of
all the breakpoints.

Displays the contents of a
CPU register and accepts a
new value (similar to the
function of ‘@ above).

Executes the code from
addr onwards, one instruc-
tion at a time, giving a full
register display. Hit (J) to
continue, (ESC) to return
to the command level.

Displays the decimal, hex,
and binary value of expr.

Searches the memory from
#00¢ onwards for every
occurrence of bystr. The
word ‘searching’ is dis-
played while the program
is searching, and the address
displayed when bystr is
found. Hit (RET) to con-
tinue the search, or (ESC)
to return to command level

As 'S’ above.

Load, Save, and Verify
machine code to tape, see
BASIC panel.

INSTRUCTION FORMAT

Instruction

D A
9F

Al
LD (§ED46)A

Z80

Addressing Mode

Register (Direct)
Immediate
Absolute (Direct)

LD A, (HL) Register (Indirect)
LD A, (1Y+d) Indexed (Indirect)
(volg Implied

12
ASSEMBLY LANGUAGE
y FORMATS
Psuedo-
Op- ¢
Codes Meaning
ORG origin; assemble
addr machine code in memory

from addr onwards. The
program line with ORG on
it cannot take a label.

EQU equate; set the symbol in
the Label Field equal to
the constant, symbol or
expression in the Operand

Field.

DB define byte(s); load

const/ this location, and as

chstr many following as required
with the value(s) of const
or chrstr

Dw define word; load this

const/ location with the lo-

symb byte, and the next location
with the hi-byte of the
operand

DS define storage; add the

const/ value of the operand to

symb the location address of this
instruction.

Abbreviations;

addr a :-prefixed hex address

const a $-prefixed hex

constant; as an operand of
DB, const must be a single-
byte value. A string of
constants such as (DB
const(SP) const (SP) const
. etc) is valid.

chstr a string of characters en-
closed in single quotes (e.g.
‘AB3%9K10°)

symb any valid symbolic operand

LINKING MACHINE CODE AND
BASIC

Once you're familiar with both Champ and
Assembly language programming, you'll
probably want to be able to call special
purpose machine-code routines from BASIC
programs, rather than write entire programs
in machine code. The easiest way of doing
this is:

e Using Champ, develop the Assembly
language routine util it works.

2. From ASSEMBLE mode, SAVE
the Assembly language routine to tape for
future reference.

3 Assemble the routine into memory,
choosing an ORG address near the top of
User RAM (see your computer User Manual
for Memory Map and advice).

4. From DEBUG mode, SAVE the
block of memory containing your machine
code to tape.

